ARTHUR, James

Article

Citation

Please note: Citations appear in the language in which they were delivered.

Chancellor:
A train leaves the station heading east, travelling at 80 kilometres an hour toward another station 50 kilometres away, where a train has just left heading west at 75 kilometres an hour. How many of us have dreaded the implications of this scenario, with its valiant, ensuing struggle - an almost certainly futile struggle, I might add - to determine where the trains will meet?

To make matters worse, we all know that this is a valuable, practical example of mathematics at work. Yet the transition from trains on tracks to symbols on paper means entering an abstract world that can appear to be terribly foreboding.

For some of us, however, the prospects of that world emit nothing less than a siren's call. Just as the Greek philosopher Plato speculated that our reality was little more than a flawed reflection of a realm of perfect forms and patterns, the most dedicated mathematicians seek to explore that realm and map it in detail. Their work can be elusive at first glance, but its importance can be profound.

Indeed, writing in the midst of World War II, the celebrated Cambridge mathematician Godfrey Hardy thought the matter was important enough to write a famous "apology" for becoming a mathematician.

There he explained the crucial distinction between "trivial" mathematics - used in train schedules, chess problems or military applications - and the "real" mathematics he and his colleagues were developing. The latter, he insisted, is no contemplative, philosophical exercise, but a creative, purposeful endeavour.

Or, James Arthur accordera nettement à cette démarche la plus grande importance et s'emploiera à poursuivre l'œuvre de Monsieur Hardy. La carrière de Monsieur Arthur, un authentique mathématicien, recoupe désormais quatre décennies. De chargé de cours à Princeton, il deviendra professeur adjoint à Yale et professeur à la Duke University.

Au cours de ces années, l'Institute for Advanced Study de Princeton et le Congrès international des mathématiciens de Varsovie en Pologne, où il aura présenté plusieurs conférences, auront, en outre, considérablement bénéficié de son expertise et de son apport.

Monsieur Arthur est membre du corps professoral du Département de mathématiques de l'université de Toronto depuis 1978. Après seulement quatre ans en poste, il remportera la bourse Steacie décernée par le Conseil de recherches en sciences naturelles et en génie. Cinq ans plus tard, la Société royale du Canada lui rendra hommage en lui conférant le prix John L. Synge. Ce prix, qui reconnaît un apport émérite aux mathématiques par un chercheur de moins de 40 ans, n'est attribué que lorsqu'un candidat exceptionnel fait surface.

Such accolades speak to the ongoing enthusiasm that has accompanied Dr. Arthur, who is regularly cited as perhaps the best and most immediately influential mathematician currently active in Canada. His work stands at the forefront of a bold initiative to unify the diverse branches of pure mathematics. Two of these branches have extensive pedigrees.

Analysis is the examination of spatial issues, such as shapes, surfaces and the motions of objects. Algebra, on the other hand, deals with the unchanging world of numbers and their intricate relationships with one another. These two facets of the mathematical world would seem to share only the most superficial family ties, but Dr. Arthur has revealed deep and fundamental associations between them.

Formally known as harmonic analysis, this mathematical undertaking is as ambitious as defining the sometimes confounding behaviour of quantum physics, where waves and particles intermingle in subtle ways. Geometry and algebra appear to be heading for a similarly subtle union, in much the same way that one can attempt to pin down the link between the shape of a musical instrument and the infinite variety of sounds it can produce. It is a daunting challenge, to which Dr. Arthur has successfully risen.

Les retombées des travaux de Monsieur Arthur alimenteront la recherche, et il pourrait s'écouler plusieurs décennies avant que leur portée ne soit pleinement connue. Certains observateurs vont jusqu'à dire que ses recherches vont révéler les principes absolus gouvernant les mathématiques et qu'ils jetteront les bases d'une nouvelle façon de comprendre les phénomènes naturels.

Pour leur part, les mathématiciens ne se soucient toutefois pas outre mesure de ces grands objectifs car le plaisir de créer est, à lui seul, une grande source de satisfaction pour eux. On y trouve d'ailleurs les fondements des " Excuses " que Godfrey Hardy avait lancées à la population. Il voyait dans les mathématiques une véritable source de plaisir à une époque où la folie de la guerre pesait sur un monde déchiré par les événements.

Les propos de James Arthur, par contre, ont une toute autre résonnance. Durant sa carrière, il a célébré la richesse du legs de l'après-guerre, la quête de l'harmonie, la valorisation du raisonnement logique et avant tout, celle du savoir.

Indeed, he has given the field of mathematics dignity enough to make any of us want to know just when those two trains will meet.

It is for these reasons, Chancellor, that in the name of the Senate of the University of Ottawa, I present to you for the degree of Doctor of the University, James Arthur, distinguished and celebrated mathematician.

Back to profile: James ARTHUR

Back to top