
Core	 Undergraduate	Computer	Science	Courses

Please, indicate below the grades that you obtained in the following courses (N/A if	 you did
not take that course). If your university differentiates between	 “theory course” and	
“laboratory”, please indicate only the “theory”	 part. See the next page for the description of
these courses at	 the University of Ottawa.

Student Name:___

COURSE Your Grade Max Possible

“Discrete Structures” (or	 “Discrete Math”):	

“Data Structures”	 (or	 “Data Structures	 and Algorithms 1”):

“Algorithms”	 (or	 “Data Structures and Algorithms 2”):

“Formal Languages	 “ (or	 “ Theory of Computing“

or “Automata	 Theory”):

“Databases”:

“Computer Architecture”:

“Operating Systems”:

“Software Engineering” (or	 “Software Development”):

Grade

Indicative description of	 core	 CS courses (note that	 the description from your University might
differ slightly).

Discrete Structures: Discrete structures as they apply to computer science, algorithm
analysis and design. Predicate logic. Review of proof techniques; application of induction to
computing problems. Graph theory applications in information technology. Program
correctness, preconditions, postconditions and invariants. Analysis of recursive programs
using recurrence relations. Properties of integers and basic cryptographical applications.

Data Structures: The concept of abstract data types. Simple methods of complexity
analysis. Trees. The search problem: balanced trees, binary-trees, hashing. Sorting. Graphs
and simple graph algorithms: traversal, minimum spanning	 tree. Strings and pattern
matching.

Algorithms: Analysis of algorithms: worst-case analysis, complexity analysis, asymptotic	
notations and	 basic complexity classes. Algorithm design	 techniques: brute force, divide and	
conquer, dynamic	 programming, greedy, backtracking. Computational complexity of	
problems: lower bound arguments, the classes P, NP, NP-complete, dealing with NP-
complete problems.

Formal Languages: Regular languages, finite automata, transition graphs Kleene's
theorem. Finite automata with output. Context-free languages, derivation trees, normal
form grammars, pumping lemma, pushdown automata, determinism. Decidability.
Recursively enumerable languages, Turing machines, the halting problem.

Databases: Fundamental database concepts. Entity-Relationship modeling. Relational
algebra	 and	 relational calculus. Relational databases. Database definition	 and	 manipulation	
using SQL. Embedded SQL. Functional dependencies and normalization. Introduction	 to
physical database design. Design	 and implementation	 of a database application	 in	 a team
project.

Computer Architectures: Design a digital computer to execute a given instruction set.
Design of digital computers. Register transfer and microoperations. Designing the
instruction set, CPU and CPU control. Basic machine language programming. Using pipelines
for CPU design. Designing the memory unit. Designing Imput-Output subsystem.

Operating Systems: Principles of operating systems. Operating systems design	 issues.
Process management, process scheduling, concurrency issues. CPU scheduling. Memory
management. Virtual memory. Mass storage systems. Input/Output system. File system.
Security	 and protection. Examples of operating	 systems.

Software	 Engineering: Principles of software engineering: Requirements, design	 and	
testing. Review of principles of	 object orientation. Object oriented analysis using UML.
Frameworks and	 APIs. Introduction to	 the client-server	 architecture. Analysis, design and
programming of simple servers and clients. Introduction	 to user interface technology.

	Student Name:
	undefined:
	Data Structures or Data Structures and Algorithms 1:
	Algorithms or Data Structures and Algorithms 2:
	undefined_2:
	undefined_3:
	undefined_4:
	undefined_5:
	Software Engineering or Software Development:
	undefined_6:
	undefined_7:
	undefined_8:
	undefined_9:
	undefined_10:
	undefined_11:
	undefined_12:
	undefined_13:

