Hypoglycemic Agents

Dr. Roland Halil, PharmD, ACPR, BScPharm, BSc(Hon) Clinical Pharmacist, Bruyère Academic Family Health Team Assistant Professor, Dept of Family Medicine, UOttawa

rhalil@bruyere.org

Twitter: @RolandHalil

July 2022

Disclosures

Relationships with Commercial Interests:

- Consultant with the Foundation for Medical Education at McMaster University (non-profit org)
 - (PBSG module consultant & reviewer)
- Occasional consultant with Rxfiles (non-profit org)

Disclosure of Commercial Support : None

Potential for Conflict(s) of Interest: None

Objectives

- List the classes of oral antihyperglycemic agents and understand their place in therapy.
 - Determine the relative efficacy, toxicity, cost and convenience of these agents before choosing therapy
 - Rationalize prescribing of oral hypoglycemics
- Describe the current approach to pharmacologic management of type 2 diabetes.

Targets

	A1C	Fasting blood glucose (sugar) (mmol/L)	Post-prandial glucose 2h after eating (mmol/L)
Target for most people with diabetes	<u><</u> 7.0%	4.0 - 7.0	4.0 - 10.0

https://www.diabetes.ca/diabetes-and-you/healthy-living-resources/blood-glucose-insulin/managing-your-blood-sugar Accessed July 23/18

Diabetes: complications

Priorities / Goals of Care

Lifestyle Modification / Weight Loss Quality of evidence:

• All RCT / cohort data

Time to benefit:

All in months

Quantity of benefit?

↓ Mortality via:

Glycemic Control

1

Vascular Protection

Lifestyle Modification & Weight Loss

Finnish Diabetes Trial

- Pre-diabetics (n = 522)
- Moderate wt loss (5%) (esp. abd fat)
- Physical activity
 - <u>></u> 150 min/week
- <u>12%</u> ARR / <u>58%</u> RRR for DM2 at 4 years
 - 11% (95% CI 6-15%)
 vs.
 - 23% (95% CI 17-29%)

N.B. Drugs ~ 30% RRR

DiRECT trial

- Diabetics (n = 306)
 - Specially-formulated
 800 calorie liquid diet
 - Consisted of 4 shakes that replaced all meals x 3-5 months
- 15kg wt loss at 1 yr
 - 24% vs. 0% control (p<0.0001) NNT=5
- DM2 remission at 1 yr
 - 46% vs. 4% control
 (p<0.0001, O.R. 19.7,
 95% Cl 7.8-49.8) NNT=3
 - **36%** remission at 3 yrs

Bariatric surgery

(all types) ROUX-EN-Y GASTRIC BYPASS SLEEVE GASTRECTOMY ADJUSTABLE GASTRIC BAND DUODENAL SWITCH

- Bariatric surgeries in >135,000 pts found:
- Improved DM2 in 90%
- DM2 remission in 78%
 - American Society for Metabolic and Bariatric Surgery (ASMBS)

Diabetes

Previously, DM2 = MI equivalent – Automatic Rx for:

• ASA, statin, ACEinh

Currently...

Vascular Protection & Glycemic Control

• Any ACEinh or ARB

- Less clear benefit at lower risk
- Very clear benefit at higher risk

• Any Statin

- Less clear benefit at lower risk
- Very clear benefit at higher risk
- ASA
 - NNT ~ NNH (1' prevention)
 - Only for 2' prevention

• Metformin

- UKPDS-34 trial
- Diabetes-specific mortality
 - (= Death from MI, stroke, PVD, kidney disease, hypo- or hyperglycemia, or sudden death).
 - Metformin vs. intensive:
 - 7.5 vs. 10.3 (P=0.11)
 - Metformin vs. diet:
 - 7.5 vs. 12.7 (P=0.017)
 - 2.8% 5.2% ARR
- All-cause mortality
 - Metformin vs. intensive:
 - 13.5 vs. 18.9 (P=0.021)
 - Metformin vs. diet:
 - 13.5 vs. 20.6 (P=0.011)
 - 5.4% 7% ARR

2 ↓ Morbidity via:

Prevention of Microvascular Complications & Hgb-A1C Targets

- Intensive vs Conventional insulin therapy (n=110)
- Median A1c: 7.1% vs 9.4%

Shichiri M et al. Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care. 2000 Apr;23 Suppl 2:B21-9.

Non-Pharmacologic Tx

Mainstay of therapy!

- Nutrition therapy
 - ↓ A1c 1-2%
 - CDA recommends counseling by a dietician for all type 2 diabetics
 - <u>www.cvtoolbox.com</u> diet for Type 2 diabetes
 - <u>Continuing Medical Implementation Inc. (cvtoolbox.com)</u>
 - <u>http://www.cvtoolbox.com/downloads/diets/type2_diabetes_e</u> <u>ating_plan_2010.pdf</u>

Pharmacotherapy

Comparison of antihyperglycemics

Pharmacotherapy

Drug Classes

Drug Classes

Sensitizers

- Metformin
- Glitazones (TZD)
 - Rosiglitazone (Avandia[®])
 - Pioglitazone (Actos[®])

Secretagogues

- Sulfonylureas
 - Eg. Glyburide, Gliclazide
- Meglitinides
 - Eg Repaglinide (Gluconorm[®])

<u>Other</u>

- Alpha glucosidase inhibitors (Acarbose)
- DPP4 inhibitors (Gliptins)
 - Sitagliptin, Linagliptin
 - Saxagliptin, Alogliptin

SGLT2 inhibitors (Cana- Dapa- Empagliflozin)

Incretin (GLP1) Analogues (sc injection)

* Liraglutide , Dulaglutide, Lixisenatide,

* Exenatide, Semaglutide (po/sc)

Pharmacology

Sensitizers

Sensitizers

- Metformin
- Glitazones (TZD)
 - Rosiglitazone (Avandia[®])
 - Pioglitazone (Actos[®])

- Reduce insulin resistance
- Increase glucose uptake & utilization in muscle and adipose tissue
- Reduce hepatic glucose output

Drug Classes

Sensitizers

- Metformin
- Glitazones (TZD)
 - Rosiglitazone (Avandia[®])
 - Pioglitazone (Actos[®])

Secretagogues

- Sulfonylureas
 - Eg. Glyburide, Gliclazide
- Meglitinides
 - Eg Repaglinide (GLUCONORM[®])

<u>Other</u>

- Alpha glucosidase inhibitors (Acarbose)
- DPP4 inhibitors (Gliptins)
 - Sitagliptin, Linagliptin
 - Saxagliptin, Alogliptin

SGLT2 inhibitors (Cana-, Dapa, Empa-gliflozin)

Incretin (GLP1)Analogues

* Liraglutide , Dulaglutide, Lixisenatide,

* Exenatide, Semaglutide (all sc inj)

Pharmacology

Drug Classes

Sensitizers

- Metformin
- Glitazones (TZD)
 - Rosiglitazone (Avandia[®])
 - Pioglitazone (Actos[®])

Secretagogues

- Sulfonylureas
 - Eg. Glyburide, Gliclazide
- Meglitinides
 - Eg Repaglinide (GLUCONORM)

<u>Other</u>

- Alpha glucosidase inhibitors (Acarbose)
- DPP4 inhibitors (Gliptins)
 - Sitagliptin, Linagliptin
 - Saxagliptin, Alogliptin

SGLT2 inhibitors (Cana-, Dapa, Empa-gliflozin)

Incretin (GLP1)Analogues

* Liraglutide , Dulaglutide, Lixisenatide,

* Exenatide, Semaglutide (all sc inj)

Pharmacology: Other

<u>Alpha glucosidase inhibitors</u> (Acarbose)

• Competitive inhibitor of pancreatic α-amylase and intestinal brush border α-glucosidases,

= delayed hydrolysis of complex carbs & disaccharides and absorption of glucose; Dose-dependent reduction in postprandial serum insulin and glucose peaks; inhibits the metabolism of sucrose to glucose and fructose

• <u>SGLT2 inhibitors (Canagliflozin, Dapagliflozin, Empagliflozin)</u>

- Inhibits sodium-glucose cotransporter 2 (SGLT2) in the proximal renal tubules
 - = reduced reabsorption of filtered glucose from renal tubule and lowered renal threshold for glucose (RTG).
 - = results in increased urinary excretion of glucose, thereby reducing plasma glucose concentrations.

<u>DPP4 inhibitors</u> (<u>Gliptins</u>) – (Sitagliptin, Linagliptin, Saxagliptin, Alogliptin)

• Prolongs the action of endogenous *incretin* hormones by blocking their breakdown by the enzyme, dipeptidyl peptidase-4 (DPP-4). This leads to more insulin release after eating.

• Incretin (GLP1) Analogues – (Liraglutide, Exenatide, Semaglutide, Dulaglutide)

- sc injection (daily or weekly) (New oral, daily semaglutide now available)
- mimic endogenous incretin hormones:
 - "increases glucose-dependent insulin secretion, decreases inappropriate glucagon secretion, **slows gastric emptying**; also acts in the areas of the brain involved in **regulation of appetite** and caloric intake."

So Many Options!

How to Choose?

• FOUR steps to Rational Prescribing:

Rational Prescribing

Roland Halil, PharmD, ACPR, BScPharm, BSc(Hon) ©

a) Mortality benefit

- Metformin UKPDS-34
- <u>GLP1 analogs</u>:
 - Liraglutide LEADER trial
 - Semaglutide
 - SUSTAIN-6 trial (sc inj)
 - PIONEER-6 trial (po tabs)
 - MACE ns; But lower allcause death and CV death (?odd)
 - Dulaglutide REWIND
 - Lowered MACE, (Not mortality, only non-fatal stroke, not MI)
 - Exenatide EXSCEL None
 - Lixisenatide ELIXA None

- <u>SGLT2-inh</u>:
 - Empagliflozin
 - EMPA-REG trial
 - (2[°] prevention trial)
 - Dapagliflozin
 - DAPA-HF trial
 - DAPA-CKD trial
 - Canagliflozin
 - CREDENCE trial
- ?Insulin "legacy effect"
 - 1 yr tight control = reduced
 M&M 10 yrs later! (<u>UKPDS</u>)

b) Morbidity benefit

(Reduction in microvascular outcomes)

- Older meds have shown a morbidity benefit (SU, etc)
- Newer meds show a reduction in HbA1c
- Metformin
- Acarbose
 - MERIA meta-analysis
 - -(Driven by non-fatal MI)

- All GLP1 analogs:
 - All SGLT2-inh:
 - Canagliflozin
 - CANVAS & CREEDENCE trials
 - Dapagliflozin
 - DECLARE-TIMI 58 trial
 - Renal Composite (sustained ↓eGFR ≥40% to <60mL/min, new ESRD, or death from renal/CV cause)

Cardiovascular outcome trials

Table 2 HR and 95% CI for CV and kidney endpoints and all death for DPP4 inhibitor, GLP-1RA and SGLT2 inhibitor studies (excludes post-ACS studies)

Study	Medication	MACE ^a	MACE+ ^a	MI ^b	Stroke ^b	CV death	Heart failure	All death	Kidney endpoint ^c
DPP4 inhibitor studies									
SAVOR	Saxagliptin	1.00 (0.89, 1.12)	1.02 (0.94, 1.11)	0.95 (0.80, 1.12)	1.11 (0.88, 1.39)	1.03 (0.87, 1.22)	1.27 (1.07, 1.51)	1.11 (0.96, 1.27)	1.08 (0.96, 1.22)
TECOS	Sitagliptin	0.99 (0.89, 1.10)	0.98 (0.88, 1.09)	0.95 (0.81, 1.11)	0.97 (0.79, 1.19)	1.03 (0.89, 1.19)	1.00 (0.83, 1.20)	1.01 (0.90, 1.14)	NG
CARMELINA	Linagliptin	1.02 (0.89, 1.17)	1.00 (0.88, 1.13)	1.12 (0.90, 1.40)	0.91 (0.67, 1.23)	0.96 (0.81, 1.14)	0.90 (0.74, 1.08)	0.98 (0.84, 1.13)	1.04 (0.89, 1.22)
GLP-1RA studies									
LEADER	Liraglutide	0.87 (0.78, 0.97)	NG	0.88 (0.75, 1.03)	0.89 (0.72, 1.11)	0.78 (0.66, 0.93)	0.87 (0.73, 1.05)	0.85 (0.74, 0.97)	NG
SUSTAIN-6	Semaglutide (s.c.)	0.74 (0.58, 0.95)	NG	0.74 (0.51, 1.08)	0.61 (0.38, 0.99)	0.98 (0.65, 1.48)	1.11 (0.77, 1.61)	1.05 (0.74, 1.50)	NG
EXSCEL	Exenatide (MR)	0.91 (0.83, 1.00)	NG	0.97 (0.85, 1.10)	0.85 (0.70, 1.03)	0.88 (0.76, 1.02)	0.94 (0.78, 1.13)	0.86 (0.77, 0.97)	NG
Harmony	Albiglutide	0.78 (0.68, 0.90)	0.78 (0.69, 0.90)	0.75 (0.61, 0.90)	0.86 (0.66, 1.14)	0.93 (0.73, 1.19)	NG	0.95 (0.79, 1.16)	NG
SGLT2 inhibitor studies									
EMPA-REG OUTCOME	Empagliflozin	0.86 (0.74, 0.99)	0.89 (0.78, 1.01)	0.87 (0.70, 1.09)	1.18 (0.89, 1.56)	0.62 (0.49, 0.77)	0.65 (0.50, 0.85)	0.68 (0.57, 0.82)	0.54 (0.40, 0.75)
CANVAS Program ^d	Canagliflozin	0.86 (0.75, 0.97)	NG	0.85 (0.69, 1.05)	0.90 (0.71, 1.15)	0.90 (0.71, 1.15)	0.67 (0.52, 0.87)	0.87 (0.74, 1.01)	0.60 (0.47, 0.77)
DECLARE	Dapagliflozin	0.93 (0.84, 1.03)	NG	0.89 (0.77, 1.01)	1.01 (0.84, 1.21)	0.98 (0.82, 1.17)	0.73 (0.61, 0.88)	0.93 (0.82, 1.04)	0.53 (0.43, 0.66)

HR findings are derived from intention-to-treat analyses

^aMACE: CV death, MI, stroke, MACE+: CV death, MI, stroke, acute coronary event

^b Fatal and non-fatal

^cComposite of variables, not including albuminuria

d Composed of two studies

MR, modified release (long-acting); NG, not given

Home P. Cardiovascular outcome trials of glucose-lowering medications: an update. Diabetologia. **2019** Mar;62(3):357-369. doi: 10.1007/s00125-018-4801-1. <u>https://link.springer.com/content/pdf/10.1007%2Fs00125-018-4801-1.pdf</u>

Cardiovascular outcome trials

Systematic Review of Cardiovascular Outcome Trials Using New Anti-Diabetic Agents in CKD Stratified by Estimated GFR

Methods

power rather than lack of effect.

Arshad A. et al. Systematic Review of Cardiovascular Outcome Trials Using New Antidiabetic Agents in CKD Stratified by Estimated GFR. Kidney International Reports. Volume 6, Issue 9, September 2021, Pages 2415-2424 Systematic Review of Cardiovascular Outcome Trials Using New Antidiabetic Agents in CKD Stratified by Estimated GFR – ScienceDirect

🥑 @EricAu

Benefit

2nd: SURROGATE Outcomes

c) HbA1c reduction

- Any drug that reduces Hgba1c < 7%
- Blood glucose level reduction
- Fasting or Prandial

d) Insulin Sparing Effects

 Avoidance of hyperinsulinemia and associated risk factors (metabolic syndrome, atherosclerosis, elevated TGs/UA/weight/BP, etc.)

Benefit

2c) Hb-A1c reduction

– <u>~ 1% to 2%</u>

•	Metformin	(1% - 2%)
•	Sulfonylureas	(1% - 2%)
•	Repaglinide	(1% - 1.5%)
•	Glitazones (TZDs)	(0.4% - 1.5%)
•	Canagliflozin	(0.8 – 1%)
•	Liraglutide (GLP1 analogs)	(1% - 2%)

– <u>~ 0.5% to 1%</u>

- Acarbose
- DPP4 inhibitors ('Gliptins)
- Dapagliflozin, Empagliflozin
- Nateglinide

Nathan DM, et al. Diabetes Care 2008 (Dec);31:1-11

Diabetes Canada 2018 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada. Can J Diabetes. 2018;42(Suppl 1):S1-S325

Benefit

2d) Insulin Sparing Effect

- = Weight neutral or weight negative
- = Reduction of hyperinsulinemia
 - METFORMIN
 - TZD's (GLITAZONE's)
 - ACARBOSE
 - DPP4 inh ('gliptins)
 - Incretin (GLP1) Analogues (Liraglutide, Semaglutide etc.)
 - SGLT2 inh (Empagliflozin etc.)

Consider Harm

Ask yourself ...

	Bothersome	Severe
Common		Not legal
Rare	Who cares	

- Age?
 - Newer agents = Less Safety Data
 - Older agents = More Safety Data

Harm Serious / Rare

<u>Glitazones</u>

- CHF
- Fractures
- M.I.
 - (rosiglitazone)
- Bladder Cancer
 - (pioglitazone)

• <u>Secretatgogues</u>

(Sulfonylureas & Meglitinides)

Severe Hypoglycemia

Harm Serious / Rare

<u>SGLT2 inhibitors</u>

(FDA OK 2013; H.Can. OK 2015)

- Euglycemic DKA
 - Risk increased 7x in DM2
 - Estimated incidence ~ 0.1%.
 - **73 cases** (2013 to 2015 in <u>FAERS</u> database)

– Fournier gangrene

- **542 cases** by 2020 necrotising fasciitis in the perineum (FDA warning)
- reported occurrence = 1.6 out of 100,000 males annually in U.S., most frequently in males 50-79 yo.
- Urosepsis
 - **19 cases** (2013-2014)(FAERS) database
- = ~ Reasonable safety data

Incretin (GLP1) Analogues

(H.Can. approved in 2010)

• DPP4 inhibitors ('gliptins)

• ?Heart failure

- <u>Sitagliptin</u> (Approved in 2008)
 - <u>No</u>, per 2015 TECOS trial (n = 14,671)
 - Initially, Yes, per lower quality data [2014 post hoc pooled analysis of 25 RCTs (n = 1261)]
- <u>Linagliptin</u> <u>No</u> (per CARMELINA tial)
- <u>Saxoglitpin</u> Yes? (SAVOR-TIMI 53 trial)
- Alogliptin Yes? (EXAMINE trial)
- ?Pancreatitis maybe/unlikely
 - <u>Yes</u> per Faillie 2014 (PMID: 2435244) & Lee 2019 (PMID: 31431452)
 - <u>No</u> per Chou 2014 (PMID: 24859164) & Thomsen 2015 (PMID: 25633664)

= ~ Reasonable safety data

Harm Serious / Rare

• <u>Metformin</u>

- ?Risk of Lactic Acidosis
 - 0.03 to 0.06 cases / 1000 pt-yrs
 - ~ 50% fatal
 - When implicated:
 - Based on case reports
 - Primarily diabetics w/ significant renal insufficiency, both intrinsic renal disease and renal hypoperfusion, w/ multiple medical/surgical problems and multiple medications.
 - Phenformin pulled from market due to L.A. in 1977
 - Cohort studies and retrospective reviews:
 - -Zero risk of lactic acidosis with metformin

Metformin Dosing

• Dosing recommendations with renal insufficiency:

- CrCl > 30 mL/min \rightarrow full dose
 - 2.5g/day
- CrCl = 20 30 mL/min \rightarrow reduced dose
 - 1g/day (If <u>NO</u> other risk factors, else D/C)
- Take home: Assess OTHER RISK FACTORS for lactic acidosis

1) Salpeter SR, et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database of Systematic Reviews 2010, Issue 4. Art. No.: CD002967. <u>http://www.cochrane.org/CD002967/ENDOC_risk-of-fatal-and-nonfatal-lactic-acidosis-with-metformin-use-in-type-2-diabetes-mellitus</u> Accessed Sept 24, 2015

- 2) Nasri, H. et al. Metformin: Current knowledge. J Res Med Sci. 2014 Jul; 19(7): 658–664. PMCID: PMC4214027 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214027/ Accessed Sept 24, 2015
- 3) A A Tahrani, et al. Metformin, heart failure, and lactic acidosis: is metformin absolutely contraindicated? BMJ. 2007 Sep 8; 335(7618): 508–512. PMCID: PMC1971167. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1971167/ Accessed Sept 24, 2015
- 4) Lalau JD. Lactic acidosis induced by metformin: incidence, management and prevention. Drug Saf. 2010 Sep 1;33(9):727-40. PMID: 20701406

5) Lazarus B, Wu A, Shin J, et al. Association of Metformin Use With Risk of Lactic Acidosis Across the Range of Kidney FunctionA Community-Based Cohort Study. *JAMA Intern Med.* Published online June 04, 2018. doi:10.1001/jamainternmed.2018.0292

https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2682516 Accessed June 7, 2018

Risk Factors - Lactic Acidosis

Severe renal impairment
 – (caution if CrCl < 30ml/min)

<u>and</u>

- Hepatic disease
- alcoholism
- CHF
- COPD
- CRF
- Pneumonia
- Ongoing acidosis
 - Lactic, keto etc.

Harm Common / Bothersome

1) METFORMIN

- GI upset / diarrhea Start low, go slow!
 - Initial dose 250mg QDaily to BID
- B12 / folate deficiency / anemia (6 8/100)
 - Reduced absorption so, **supplement**
- Anorexia usually transient

Harm Common / Bothersome

- 2) Sulfonylureas:
 - Sulfa skin reactions
 - Rash / photosensitivity ~1%
 - Weight gain (2-3kg)
 - Mild Hypoglycemia:
 - Most with glyburide. Least w/ glimepiride & gliclazide
 - Requires consistent food intake
 - Major episodes 1-2% (esp. in elderly)

Harm Common / Bothersome

- 3) Glitazones:
 - Edema
- 4) Meglitinides:
 - Hypoglycemia
- 5) Acarbose:
 - GI upset / diarrhea / bloating
- 6) Gliptins:
 - Generally well tolerated
 - GI upset, edema, ?infection

7) Incretin (GLP1) analogues

- N/V/D
- 8) SGLT2 inhibitors
 - HyperK+, AKI
 - UTI (includes bacteriuria [asymptomatic], cystitis: 9%; females: 4%-18%; males: 4%),
 - Genitourinary fungal infection (4%; females: 5% to 11% [includes bacterial vaginosis, cervicitis, vulvitis, vulvovaginal candidiasis, vulvovaginal infection, vulvovaginitis];
 - males: 2% to 3% [includes balanitis, balanoposthitis, genitourinary fungal infection, penile infection, scrotal abscess])

Cost

• Patient cost vs Societal cost

- Rx cost?
- ODB coverage?
- Covered under other plans?

Biguanide: ↓ hepatic gluce	revention)	1
Metformin GLUCOPHAGE, GLYCON, g 500 ⁵ , 850mg tab GLUMETZA, g X 500mg, 1000mg ER tabs once daily dosing {ghost tab shell may be passed in stool after releasing drug}	\$11-13 <mark>\$21</mark> \$22 \$125-245 g \$21	1
Sulfonylureas (SU): insulin	·	
Gliclazide DIAMICRON MR, g 30, 60mg ⁶ tab DIAMICRON, g X ▼ 80mg ⁶ tab Glimepiride AMARYL, g X ⊗ 1, 2, 4mg ⁶ tab GlyBURIDE DIABETA, g 2.5, 5mg tab preferred 5U inpregnancy	\$21 \$43 \$17 <u>or</u> 75 ^x \$25 <u>or</u> 140 ^x \$87 \$87 \$144 \$12-14 \$23 \$35	
TOLBUTamide ORINASE, g 500mg tab ⁵	\$17 \$47 \$85	
Meglitinides: short acting Repaglinide GLUCONORM, g = ▼ 0.5, 1, 2mg tab Nateglinide STARLIX D/C '15	e \$37 g. 120 \$39 g. 120 \$39 g. 68	
Thiazolidinediones (TZDs)	:her meds)	
Pioglitazone ACTOS, g ≅ Ø 15, 30, 45mg tab	\$52 g, 279 / \$69 g, 379 \$100g, 555	
AVANDIA, g a C 1st approved 2000 2, 4, 8mg tab	\$192g, 254 \$354g, 254 \$262g, 348	
α Glucosidase Inhibitors <mark>:</mark>	ılin	
Acarbose GLUCOBAY (previously PRANDASE) 50, 100mg ^c tab	\$40 \$100-133 \$133	

Cost

- From Rxfiles Nov 2019
- = Cost(\$)/100 days (in Sask.)
- Alternatively, check
 ODB e-formulary <u>here</u>:
 - N.B. Not true pt costs
 - Only comparative costs

Cost

ODB e-formulary *comparative* costs

Search Results

Therapeutic Classification

68:20:02 ANTI-DIABETIC AGENTS ORAL ANTI-DIABETIC AGENTS

You can sort your results in ascending / descending order by clicking on the column headings, with the exception of Th Notes.

Products found: 154						Ne Ne		
DIN/ PIN/ NPN \$	Generic Name 🛛	Brand Name, Strength & Dosage Form \$	MFR ¢	Drug Benefit Price or Unit Price \$	Amount MOHLTC Pays \$	Inter- change- able \$	Limited Use 🗧	
02190893	ACARBOSE	Glucobay 100mg Tab	<u>BAY</u>	0.3732	0.3732	NO	YES	
02425491	CANAGLIFLOZIN	Invokana 300mg Tab	<u>JAN</u>	2.7627	2.7627	NO	NO	
02443945	EMPAGLIFLOZIN	Jardiance 25mg Tab	<u>BOE</u>	2.6177	2.6177	NO	NO	
02356422	GLICLAZIDE	Diamicron MR 60mg ER Tab	<u>SEV</u>	0.2529	0.0632	<u>YES</u>	NO	
02257726	METFORMIN HCL	Act Metformin 500mg Tab	<u>ACV</u>	0.0247	0.0247	<u>YES</u>	NO	
02303922	SITAGLIPTIN PHOSPHATE MONOHYDRATE	Januvia 100mg Tab	<u>MFC</u>	3.0932	3.0932	NO	NO	
4								

To roughly estimate pt costs: (add ~10% x No. days) + ~\$10 dispensing fee

ODB e-formulary https://www.formulary.health.gov.on.ca/formulary/ Accessed Aug 9, 2018

Convenience

- PO vs IV?
- QD vs QID?
- Lab monitoring?

Convenience

- Gliptin's
- Glitazones
- SGLT2 inh
- DPP-4 inhibitors
- GLP-1 analogs
- Sulfonylureas
- Metformin
- Meglitinides
- Acarbose

- QD
 - QD
 - QD
 - QD
- QD sc inj
- QD to BID
- QD to TID
- QD to TID
- QD to TID

with meals

Summary

1st line – <u>Metformin</u>

CV benefit, renal benefit, very safe, cheap, simple

If obesity or CVD:

- GLP1 analog
- <u>Semaglutide</u> (Ozempic[®]) [<]
 - CV & renal benefit, wt loss,
 ODB covered, weekly sc inj

- If <u>no</u> CKD/MI/CVA/CHF: Anything else
 - (except TZDs) (never ever)

If CHF or CKD:

• Any SGLT2 inh

Dapagliflozin (Forxiga®)

- CV benefit, renal benefit,
 CHF specific benefit, ODB covered, combo pill with Metformin (Xigduo[®])
- But, closely monitor SCr,
 K+, UTI sxs etc
 - Alternative for lower eGFR: Canagliflozin 100mg (low dose)

Review of Basic Concepts

1. Reduce mortality

- BP control w/ ACEi/ARB
- Plaque stabilization with statin
- ASA in 2' prevn
- Glycemic control with Metformin
 - + GLP1 analogs
 - + SGLT2inh
 - + ?Acarbose

2. Reduce morbidity

- Glycemic control to prevent microvascular complications
 - A1c < 7%

Summary

 Pathophysiology of disease underscores the key targets for modification

Insulin resistance / hyperinsulinemia

- Pharmacology of agents underscores ideal vs. suboptimal combinations of agents
- Rational Prescribing principles underscore priorities for investment in benefit/risk ratios

Questions?

Dr. Roland Halil, PharmD, ACPR, BScPharm, BSc(Hon) Clinical Pharmacist, Bruyere Academic Family Health Team Assistant Professor, Dept of Family Medicine, UOttawa

rhalil@bruyere.org

Twitter: @RolandHalil