University of Ottawa

Facilities condition index

The facilities condition index (FCI) is a numeric score used as an indicator of the overall condition of campus assets. FCI is widely used in assets management, notably by the Council of Ontario Universities in its triennial reports. Since the late 1990s, all Ontario universities have been required to conduct facility condition assessments (FCAs) using a common software system that generates FCI reports.

FCI is represented as a value between 0.0 and 1.0, determined by dividing the total dollar amount of deferred maintenance (DM) by the current replacement value (CRV) of the assets. To evaluate deferred maintenance, teams of specialists conduct facility audits and record their findings in the system. Approximately 20% of assets are evaluated each year in order to ensure that all asset data is updated once during a five-year cycle.

Between 2012 and 2014, the CRV of Ontario universities’ physical infrastructure increased by 6%, while the cost of DM increased by 11%. This resulted in an overall university system FCI increase from 0.10 in 2012 to 0.12 in 2014, the year of the most recent report.

Construction of new buildings at the University of Ottawa has resulted in an increased CRV in recent years. However, this construction did not have an impact on the overall value of deferred maintenance requirements for the campus.

In 2014, the University of Ottawa adopted a more rigorous FCA methodology, resulting in an overall increase (poorer condition) in the campus FCI, which rose to 0.17 as at April 2015. In April 2016, this figure increased to 0.21 because almost half of the campus had been assessed using the new methodology.

The health and safety of occupants using University facilities is of the highest priority in assets management. It should be noted that while the University campus infrastructure is aging, the facilities remain safe.

FCA allows for a more strategic allocation of resources earmarked for deferred maintenance. In addition, by using a continued risk-based approach as well as emerging predictive modelling techniques, the University can ensure its facilities continue to remain sound and safe for those who use them.