About U of O
Prospective Students
Students
Services
Academics
Research
News & Events
Alumni & Friends
FrançaisLibrariesMapsKeyword Search and DirectoriesCoursesU of O Home


Current calendars

Faculty calendars

Arts
Education
Engineering
Health Sciences
Law (Civil Law)
Law (Common Law)
Management
Medicine
Social Sciences
Science

Programs
Courses

Archived Calendars

See List

Contact Information

Infoservice
Tabaret Hall
75 Laurier Av. E.
Ottawa, ON, Canada
K1N 6N5

Tel: 613-562-5630
Toll-free phone:
1-877-868-8292
Fax:613-562-5323

infoservice@uOttawa.ca

InfoAdmission
Tel: 613-562-5315
Toll-free phone:
1-877-868-8292 (#5315)

admissions@uOttawa.ca
 
 
Calendars > Courses > CHEMICAL ENGINEERING

CHEMICAL ENGINEERING

1120 1520 2312 2314 2317 2712 2714 2717 2901 3111
3112 3122 3127 3316 3324 3326 3331 3335 3337 3901
3902 4116 4157 4244 4300 4301 4302 4303 4305 4306
4307 4331 4333 4343 4355 4359 4360 4361 4362 4367
4371 4372 4377 4381 4383 4385 4755 4901 4902  

 
 
CHG1120 Chemical Engineering Fundamentals (3,0,2) 4 cr.
Chemical profession in relation to the chemical process industry. System of units, dimensions. Processes, process variables and flowcharts. Material balances: single and multiple units, recycle and bypass, reactive and non-reactive systems. Chemical equilibrium, single-phase and multi-phase systems, solutions, phase diagrams. Introduction to energy balances. Unit operations and instrumentation. Introduction to problem solving techniques and use of spreadsheets.
Prerequisite: CHM1310.
  Top
 
CHG1520 Principes de base du génie chimique (3,0,2) 4 cr.
Discussion sur l'industrie des procédés chimiques et le rôle de l'ingénieur chimiste. Systèmes d'unités, dimensions. Procédés et variables de procédés et diagrammes de procédé. Bilans de matière: procédés à une ou plusieurs unités, recyclage, circuit alternatif, systèmes réactifs et non-réactifs. Équilibre chimique, système à une et plusieurs phases, solutions, diagrammes de phase. Introduction aux bilans d'énergie. Opérations unitaires et instrumentation. Introduction aux techniques de solutions de problèmes et l'utilisation d'un chiffrier.
Préalable : CHM1710.
  Top
 
CHG2312 Fluid Flow 3 cr.
Application of fluid flow principles to the solution of engineering problems. Macroscopic mass, momentum, and energy balances. Newtonian and non-Newtonian fluids, compressible and imcompressible fluids. Friction factors and Reynolds numbers for flow in conduits, around submerged objects, in packed beds and porous media. Fluidization. Flow measurement, dimensional analysis.
Prerequisite: CHG1120.
  Top
 
CHG2314 Heat Transfer Operations 3 cr.
Steady-state heat conduction in solids with and without extended surfaces. Natural and forced convective heat transfer. Transient heat conduction. Heat exchangers. Boiling heat transfer. Condensation. Evaporation. Thermal radiation.
Prerequisites: CHG2317, MAT2331.
  Top
 
CHG2317 Introduction to Chemical Process Analysis and Design (3,0,0) 3 cr.
Process analysis and design using mass and energy balances. Thermodynamic data and relationships. Simultaneous mass and energy balances on reactive and non-reactive systems. Mixing and solutions. Balances on transient processes. Introduction to computer-aided process calculations and design.
Prerequisite: CHG1120 or permission of the department.
  Top
 
CHG2712 Mécanique des fluides 3 cr.
Applications des principes d'écoulement des fluides pour la résolution des problèmes d'ingénierie. Bilans macroscopiques de conservation de la matière, de la quantité de mouvement et de l'énergie. Fluides newtoniens et non newtoniens. Fluides compressibles et incompressibles. Facteurs de friction et nombres de Reynolds pour les écoulements dans des conduites, autour des objets et dans les lits fixes. Fluidisation. Mesures des débits. Analyse adimensionnelle.
Préalable : CHG1520.
  Top
 
CHG2714 Transfert de chaleur 3 cr.
Conduction de la chaleur en régime stationnaire dans les solides avec et sans ailettes. Convection naturelle et assistée. Conduction de la chaleur en régime transitoire. Échangeurs de chaleur. Transfert de chaleur par ébullition. Condensation. Évaporation. Rayonnement thermique.
Préalables : CHG2717, MAT2731.
  Top
 
CHG2717 Introduction à l'analyse et la conception des procédés chimiques (3,0,0) 3 cr.
Analyse et conception des procédés en utilisant des bilans de matière et d'énergie. Relations et données thermodynamiques. Bilans simultanés de matière et d'énergie pour des systèmes réactifs et non-réactifs. Mélanges et solutions. Bilans sur des procédés transitoires. Introduction aux calculs et conception des procédés assistés par ordinateur.
Préalable : CHG1520.
  Top
 
CHG2901 Rapport de stage coop I / Co-op Work Term Report I 3 cr.
 
  Top
 
CHG3111 Unit Operations 3 cr.
Design of industrial equipment for evaporation, drying, humidification, absorption and stripping in plate and packed towers, distillation, liquid-liquid extraction and adsorption.
Prerequisite: CHG3316.
  Top
 
CHG3112 Process Synthesis, Design and Economics 3 cr.
Flowsheet synthesis. Design and scheduling of batch processes. Synthesis of reactor networks, separation systems, and heat-exchange networks. Equipment sizing and costing. Flowsheet optimization.
Prerequisite: CHG2317.
  Top
 
CHG3122 Chemical Engineering Practice 3 cr.
Laboratory course intended to demonstrate practical aspects of chemical engineering and to develop skills in written communication and engineering judgment. Students carry out experiments dealing with fluid mechanics, heat transfer and thermodynamics, with emphasis on computerized data acquisition and analysis techniques. Effective technical report wiriting. Principles of professional engineering practice and ethics, the societal and environmental obligations of the engineer, and workplace health and safety.
Prerequisites: CHG2312, CHG2314, CHG3324, CHG3337.
  Top
 
CHG3127 Chemical Reaction Engineering 3 cr.
Chemical reactor thermodynamics. Kinetics of chemical reactions. Batch reactors. Continuous stirred-tank reactors. Plug flow reactors. Interpretation of data and design of simple reactors. Heterogeneous reactors. Catalytic reactions.
Prerequisites: CHG2317, MAT2331.
  Top
 
CHG3316 Transport Phenomena (3,0,0) 3 cr.
Application of the basic laws of mass, momentum and energy transport in engineering analysis. Equations of continuity, motion (Navier Stokes) and energy. Molecular diffusion, models describing interphase transport. Use of equations of change in the analysis of flow, mass and heat transfer problems. Potential flow. Stress tensor. Rate of deformation tensor. Stream function. Vorticity. Time-smoothed equations of change.
Prerequisites: CHG2317, MAT2322, MAT2331.
  Top
 
CHG3324 Fundamentals and Applications of Chemical Engineering Thermodynamics (3,0,0) 3 cr.
First and second laws of thermodynamics. PVT behaviour of fluids. Equations of state. Thermal chemical effects. Estimation of physical-chemical properties. Applications of thermodynamics to various processes in the field of chemical engineering.
Prerequisites: CHG2317, CHM2230.
  Top
 
CHG3326 Principles of Phase Equilibria and Chemical Reaction Equilibria (3,0,0) 3 cr.
Properties of homogeneous mixtures. Models of solution. Fugacity and fugacity coefficient. Activity coefficient. Excess properties. Gibbs-Duhem equation and its applications. Criteria of equilibrium. Vapor-liquid equilibrium at low and high pressures. Methods of prediction. Chemical equilibrium constant, maximum conversion. Multi-reaction equilibria. Selection of operating conditions. Mathematical techniques related to the study of these topics.
Prerequisites: CHG3316, CHG3324.
  Top
 
CHG3331 Application of Mathematical Methods to Chemical Engineering (3,0,0) 3 cr.
Formulation and solution of ordinary and partial differential equations with particular emphasis on chemical engineering problems and computer applications. Numerical methods used for solution of differential equations, treatment and evaluation of data.
Prerequisites: CHG2317, MAT2322, MAT2331.
  Top
 
CHG3335 Process Control (3,0,0) 3 cr.
Fundamental concepts involved in establishing the transient behaviour and control characteristics of processes. Process dynamics. Dynamics of measuring and control elements. Controller characteristics. Dynamics of control loops. Stability criteria. Multiple loop systems. Advanced control system design. Introduction to sampled-data systems.
Prerequisites: CHG2317, MAT2331.
  Top
 
CHG3337 Data Collection and Interpretation (3,0,0) 3 cr.
Basic principles and techniques for the efficient design of experiments and effective analysis of data are presented. Topics include: the nature and analysis of process variability, comparing processes, blocking and randomization, empirical model building for quantifying relationships between process inputs and outputs, two-level factorial and fractional factorial designs for screening out inert input variables, mixture designs, response surface methodology, empirical optimization techniques, Taguchi methods, a practical approach to experimental design.
Prerequisite: MAT2377.
  Top
 
CHG3901 Rapport de stage coop II / Co-op Work Term Report II 3 cr.
 
  Top
 
CHG3902 Rapport de stage coop III / Co-op Work Term Report III 3 cr.
 
  Top
 
CHG4116 Chemical Engineering Laboratory (0.5,0,5) 3 cr.
Laboratory course to demonstrate chemical engineering principles, to further develop engineering judgment, to gain hands-on experience with equipment, and to enhance oral and written communication skills. Students participate in all phases of the investigation -- planning, execution, analysis, reporting. Use of the computer for simulation and data analysis.
Prerequisite: CHG3321.
  Top
 
CHG4157 Strategies for Engineering Process Analysis (3,0,0) 3 cr.
Design and analysis techniques for industrial and laboratory investigations are presented. Topics include: the nature and analysis of process variations, comparisons of two or more processes, modelling process behaviour, applications of factorial and fractional factorial experimental designs in processing studies, examination of response surfaces, empirical process optimization techniques, mixture designs, Taguchi methods.
Prerequisite: Completion of 2nd-year chemical engineering studies.
  Top
 
CHG4244 Plant Design Project (1,0,10) 6 cr.
A study of the engineering aspects involved in the development of an industrial plant. Capital and manufacturing cost estimates. Safety in design. Feasibility survey. Equipment design and specification. Plant layout and location. Students will work in small groups to produce a process design and economic evaluation of a complete industrial plant.
  Top
 
CHG4300 Thesis and Seminar 6 cr.
The student must prepare a thesis and present a seminar on an approved topic. The topic must have received approval of a professor in the Department who will act as thesis supervisor.
Prerequisite: Completion of all 3rd-year core courses.
  Top
 
CHG4301 Air Pollution Control Processes (3,0,0) 3 cr.
This course will review sources and types of air pollution and discuss design of equipment for use in air pollution control, e.g. grit and dust removal, sampling, equipment performance, mist removal in chemical processes, gas absorption processes, solid chemical absorbents and regeneration processes. Stack heights, dispersions and meteorological factors.
Prerequisite: Completion of 2nd-year chemical engineering studies.
  Top
 
CHG4302 Environmental Biotechnology (3,0,0) 3 cr.
Significance of microorganisms in the environment. Soil and aquatic environments, extreme environments. Kinetics of microbial growth and degradation of raw materials. Continuous and batch reactors. Mass and heat transfer. Aerobic and anaerobic processes. Microbial conversion of carbon, nitrogen and other elements. Microbial corrosion. Mineral leaching with microorganisms. Composting. Microbial contributions to pollution. Use of genetic techniques to engineer organisms with novel catalytic capabilities.
Prerequisite: Completion of 2nd-year chemical engineering studies.
  Top
 
CHG4303 Hazardous Waste Control (3,0,0) 3 cr.
Definition of hazardous waste, waste management options, use of risk assessment. Hazardous waste legislation and characterization of hazardous compounds. Control procedures, waste minimization, chemical and physical treatment, thermal incineration, landfill disposal, transportation.
Prerequisite: Completion of 2nd-year chemical engineering studies.
  Top
 
CHG4305 Advanced Materials in Chemical Engineering 3 cr.
An introduction to the fundamentals of materials science with special emphasis on materials and applications of interest to chemical engineers. Biocompatibility and biomedical applications. Corrosion. Conductivity. Structure/property relationships in polymers, metals, ceramics, semiconducting materials, nanoporous materials and composites.
Course reserved for 4th year students.
  Top
 
CHG4306 Microelectronics Manufacturing Processes 3 cr.
Background to integrated circuits. Clean room environments. Manufacturing processes: substrate formation, doping, ion implantation, oxidation, chemical vapour deposition, evaporation, sputtering, cleaning, etching, lithography, packaging, metrology and control. Fabrication of photonics and blood testing devices.
Course reserved for 4th year students.
  Top
 
CHG4307 Clean Processes and Sustainable Development 3 cr.
Design of environmentally-friendly, sustainable industrial processes. Pinch technology. Environmental considerations in new plant design, retrofitting, and operating protocol.
Course reserved for 4th year students
  Top
 
CHG4331 Introduction to Polymer Reaction Engineering (3,0,0) 3 cr.
Principles governing polymerization reactions. Mechanisms and kinetics of step-growth and chain-growth polymerization and copolymerization. Physical properties of polymers and polymer characterization. Molecular weight distribution. Polymerization reaction engineering: mathematical modelling and polymer reactor design in industrial settings.
Prerequisite: completion of all 3rd year core courses.
  Top
 
CHG4333 Fundamentals of Polymer Processing (3,0,0) 3 cr.
Polymer processing. Modelling philosophy. Continuum mechanics. Formulation and solution of equations for simple model flows. Extrusion Calendering. Coating flows. Fibre spinning. Tubular film blowing. Injection moulding. Mixing. Heat and mass transfer. Elastic phenomena. Stability of flows.
Prerequisites: CHG3316, CHG3331.
  Top
 
CHG4343 Computer-Aided Design in Chemical Engineering (3,0,0) 3 cr.
Role of Computer-Aided Design (CAD) in chemical industry. Approaches to CAD, potential and pitfalls. Estimation of physical/chemical properties application to the design of chemical processing units, evaluation of the design, sensitivity analysis. Applications include use of computer programs (software packages and student-created programs for the design of process units, e.g. distillation, towers, multiple effect evaporators, multicomponent absorbers, heat exchanger networks, etc.).
Prerequisite: CHG3331.
  Top
 
CHG4355 Science and Technology of Pulp and Paper (3,0,0) 3 cr.
Raw materials. Wood morphology. Chemistry of wood components and their environmental impact. Wood preparation. Pulping processes. Chemical pulping. Mass and energy balances. Chemical recovery. Bleaching. Elimination of pollution using closed-cycle technologies. Processes involving combined mechanical, thermal and chemical treatment. Paper recycling; deinking and cleaning. Stock preparation. Non-fibrous additives. Mechanisms of paper strength. Paper machine. Pollution abatement. Recent advances. Plant visit.
Prerequisite: Completion of 2nd-year chemical engineering studies.
  Top
 
CHG4359 Selected Topics I (3,0,0) 3 cr.
Discussion of recent progress in chemical engineering.
Prerequisite: Completion of 2nd-year chemical engineering studies.
  Top
 
CHG4360 Selected Topics II (3,0,0) 3 cr.
Discussion of recent progress in chemical engineering.
Prerequisite: Completion of 2nd-year chemical engineering studies.
  Top
 
CHG4361 Selected Topics III (3,0,0) 3 cr.
Discussion of recent progress in chemical engineering.
Prerequisite: Completion of 2nd-year chemical engineering studies.
  Top
 
CHG4362 Selected Topics IV (3,0,0) 3 cr.
Discussion of recent progress in chemical engineering.
Prerequisite: Completion of 2nd-year chemical engineering studies.
  Top
 
CHG4367 Enhanced Oil Recovery (3,0,0) 3 cr.
Petroleum recovery fundamentals. Reservoir characteristics. Water flooding. Concepts of recovery efficiency. Wettability. Oil mobilizatio and transport through porous rock. Classification of enhanced oil recovery processes. Caustic flooding. Polymer-enhanced water flooding. Surfactant-polymer flooding. Miscible flooding processes. Thermal recovery methods. Applications of enhanced recovery in the field.
Prerequisite: Completion of 2nd-year chemical engineering studies.
  Top
 
CHG4371 Properties and Treatment of Particulate Wastes - Sludges (3,0,0) 3 cr.
The environmental impact of sludges arising from industrial operations mining - petroleum refining - chemical processing. Types of Sludges - Characterization and Conditioning; Treatment and Source Reduction, Chemical Treatment and Detoxification. Stabilization of Sludges, Agglomeration, Sludge Disposal.
Prerequisite: Completion of 2nd-year chemical engineering studies.
  Top
 
CHG4372 Polymers in the Environment (3,0,0) 3 cr.
Synthetic polymeric materials - plastics, elastomers, foams and fibres. Polymer synthesis and processing. Structure-property relationships. Polymer applications. Disposal options; reduction, recycle, reuse, incineration, landfill, etc. Environmental benefits and disadvantages of polymeric materials. Introduction to environmental impact assessment procedures.
Prerequisite: Completion of 2nd-year chemical engineering studies.
  Top
 
CHG4377 Risk Assessment and Hazard Analysis (3,0,0) 3 cr.
Basic concepts of the system approach to risk assessment in the context of risk management. Use of logic trees for defining problems. Overview of techniques for probabilistic risk assessment, reliability analysis (including human factors), and hazard analysis. Organization and application of analyses.
Prerequisite: Completion of 2nd-year chemical engineering studies.
  Top
 
CHG4381 Introduction to Biochemical Engineering (3,0,0) 3 cr.
Elements of applied microbiology: taxonomy, morphology of micro-organisms, cell composition and metabolism, growth kinetics and product formation. Application of chemical engineering principles to the analysis of industrial fermentation processes. Bioreactor design and downstream processing. Industrial applications of bioprocesses: food processing, pharmaceuticals, conversion of waste materials to useful products.
Course reserved for 4th year students.
  Top
 
CHG4383 Fundamentals of Biochemical Engineering (3,0,0) 3 cr.
Enzyme kinetics, industrial production and application of enzymes, biosensors. Fermentation kinetics, batch and continuous modes of operation. Agitation and aeration. Sterilization of media and air. Downstream processing. Bioreactor design, scale-up and scale-down. Mixed cultures. Biological waste-water treatment. Selected bioprocesses, including conversion of waste materials to useful products, biorecovery of heavy metals from industrial liquid wastes, and related environmental applications. Bioprocess economics.
Prerequisite: Only third and fourth year students are allowed. (This course is primarily intended for students in the biotechnology option and cannot be combined for credit with CHG 4381.)
  Top
 
CHG4385 Adsorption Separations for Environmental Applications (3,0,0) 3 cr.
Basic principles and fundamentals of adsorption. Discussion of different important design parameters for adsorbers. Gas and vapor adsorption separation applications for environmental air pollution control. Liquid adsorption separation applications for water pollution control. Different types of designs for adsorbers are discussed.
Prerequisite: Completion of 2nd-year chemical engineering studies.
  Top
 
CHG4755 Sciences et technologie des pâtes et papiers (3,0,0) 3 cr.
Matières premières. Morphologie du bois. Chimie des composantes de bois et leur impact environnemental. Préparation du bois. Procédés technologiques de la mise en pâte. Procédés chimiques. Bilans de la matière et de l'énergie. Récupération des produits chimiques. Blanchiment. Élimination de la pollution grâce aux procédés à cycle fermé. Procédés utilisant le traitement combiné mécanique, thermique et chimique. Recyclage du papier; désencrage et lavage. Préparation de la suspension. Adjuvants non-fibreux. Mécanisme de la résistance du papier. Machine à papier. Traitements anti-pollution. Avancements technologiques. Visite d'usine.
Préalable : Cours de deuxième année en génie chimique complétés.
  Top
 
CHG4901 Rapport de stage coop IV / Co-op Work Term Report IV 3 cr.
 
  Top
 
CHG4902 Rapport de stage coop V / Co-op Work Term Report V 3 cr.
 
  Top
     
 


 

About U of O | Prospective Students | Students | Services | Academics | Research | News and Events | Alumni and Friends



System requirements | Feedback | Privacy Policy | Accessibility

© University of Ottawa
If you are looking for additional information, please contact us.
Technical questions or comments about this site? Last updated: 2015.08.06