Quand vous utilisez nos services, veuillez remercier la plateforme technologique d’histologie de Louise Pelletier dans vos articles scientifiques avec, comme numéro de référence, le RRID: SCR_021737.

Mentionnez notre installation dans vos publications!

Pourquoi nous reconnaître :

  1. Le personnel de l'installation principale est composé de scientifiques. Lorsqu'ils apportent une contribution intellectuelle et/ou expérimentale substantielle à une publication.
  2. L'existence d'installations de base dépend en partie d'une reconnaissance appropriée dans les publications. Il s'agit d'une mesure importante de la valeur de la plupart des installations de base. Une bonne reconnaissance des installations de base leur permet d'obtenir un soutien financier et autre afin qu'ils puissent continuer à fournir leurs services essentiels de la meilleure façon possible. Il aide également le personnel de base à progresser dans leur carrière, ce qui contribue à la santé globale de l'installation de base.

Quand reconnaître:

  • Chaque fois que le FHC Louise Pelletier offre des services qui appuient votre recherche.

Où reconnaître :

  • articles, affiches, présentations, rapports scientifiques, publications et subventions.

Format de l'accusé de réception:

Exemple : « Nous remercions chaleureusement les services d'histologie/imagerie/coloration fournis par la FHC Louise Pelletier (RRID: SCR_021737) de l'Université d'Ottawa. »

Nous demandons une copie de la publication au format PDF, afin que nous puissions garder une trace des projets de recherche réussis qui ont été réalisés à l'aide du Core.

Publications avec remerciements:

  1. Geertsma, H, M, et al. (2024). A topographical atlas of α-synuclein dosage and cell type-specific expression in adult mouse brain and peripheral organs. npj Parkinson's Disease. https://doi.org/10.1038/s41531-024-00672-8.
  2. Rasool, D. et al. (2024). PHF6-mediated transcriptional control of NSC via Ephrin receptors is impaired in the intellectual disability syndrome BFLS. EMBO Reports. https://doi.org/10.1038/s44319-024-00082-0.
  3. Triolo, M. et al. (2024). Optic atrophy 1 mediates muscle differentiation by promoting a metabolic switch via the supercomplex assembly factor SCAF1. https://doi.org/10.1016/j.isci.2024.109164.
  4. Weldrick, J. J. et al (2024). MicroRNA205: A Key Regulator of Cardiomyocyte Transition from Proliferative to Hypertrophic Growth in the Neonatal Heart. https://doi.org/10.3390/ijms25042206.
  5. Callao, N et al. (2023). Radiation induces long-term muscle fibrosis and promotes a fibrotic phenotype in fibro-adipogenic progenitors. Journal of Cachexia, Sarcopenia and Muscle. DOI: 10.1002/jcsm.13320.
  6. Khan, A et al. (2023). The TNFα/TNFR2 axis mediates natural killer cell proliferation by promoting aerobic glycolysis. Cellular & Molecular Immunology; https://doi.org/10.1038/s41423-023-01071-4.
  7. Parmasad, J.L. et al. (2023). Genetic and pharmacological reduction of CDK14 mitigates α-synuclein pathology in human neurons and in rodent models of Parkinson’s disease. BioRxiv. https://doi.org/10.1101/2022.05.02.490309.
  8. Goudreau, A. et al. (2023). Characterization of Hofbauer cell polarization and VEGF localization in human term placenta from active and inactive pregnant individuals. Physiological Reports. https://doi.org/10.14814/phy2.15741.
  9. Azad, T. et al. (2023). Synthetic virology approaches to improve the safety and efficacy of oncolytic virus therapies. Nature Communications. https://doi.org/10.1038/s41467-023-38651-x.
  10. Nunes, J.R.C. et al. (2023). Thermoneutral housing does not accelerate metabolic dysfunction-associated fatty liver disease in male or female mice fed a Western diet. bioRxiv 2023.01.24.524609. DOI: https://doi.org/10.1101/2023.01.24.524609.
  11. Suk, T.R., et al. (2023). Characterizing the differential distribution and targets of Sumo1 and Sumo2 in the mouse brain, ISCIENCE. DOI: https://doi.org/10.1016/j.isci.2023.106350.
  12. Hickey, R.J. et al. (2022). Designer Scaffolds for Interfacial Bioengineering. Advanced Engineering Materials. DOI: https://doi.org/10.1002/adem.202201415.
  13. Pileggi, C.A. et al. (2022). Exercise training enhances muscle mitochondrial metabolism in diet-resistant obesity. eBioMedicine. DOI: https://doi.org/10.1016/j.ebiom.2022.104192.
  14. Baker, N. et al. (2022). The mitochondrial protein OPA1 regulates the quiescent state of adult muscle stem cells. Cell Stem Cell. https://doi.org/10.1016/j.stem.2022.07.010.
  15. Lithopoulos, M. A. et al. 2022. Neonatal hyperoxia in mice triggers long-term cognitive deficits via impairments in cerebrovascular function and neurogenesis. J. Clin. Invest. https://doi.org/10.1172/JCI146095.
  16. Geertsma, H. M. et al. 2022. Constitutive nuclear accumulation of endogenous alpha-synuclein in mice causes motor dysfunction and cortical atrophy, independent of protein aggregation. Human Molecular Genetics. https://doi.org/10.1093/hmg/ddac035.
  17. Reilly, A. et al. (2022). Central and peripheral delivery of AAV9-SMN target different pathomechanisms in a mouse model of spinal muscular atrophy.Gene Therapy. https://doi.org/10.1038/s41434-022-00338-1.
  18. Wedge, M.E, et al. (2022). Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nature Communications. https://doi.org/10.1038/s41467-022-29526-8.
  19. Tamming, L.A. et al. (2022). DNA Based Vaccine Expressing SARS-CoV-2 Spike-CD40L Fusion Protein Confers Protection Against Challenge in a Syrian Hamster Model.Frontiers in Immunology. https://doi.org/10.3389/fimmu.2021.785349.
  20. Geertsma, H. M. et al. (2022). Constitutive nuclear accumulation of endogenous alpha-synuclein in mice causes motor impairment and cortical dysfunction, independent of protein aggregation. Human Molecular Genetics.https://doi.org/10.1093/hmg/ddac035.
  21. Hurskainen, M. et al. (2021). Single Cell Transcriptomic Analysis of Murine Lung Development on Hyperoxia-induced damage. Nat Commun 12(1):1565.
  22. Cyr-Depauw, C. et al. (2021). Characterization of the innate immume response in a novel murine model mimicking bronchopulmonary dysplasia. Pediatric Research 89(4):803
  23. Gharibeh.L, et al.(2021). GATA6 is a regulator of sinus node development and heart rhythm. PNAS 118(1):e2007322118.
  24. Culliton, KN and Speirs, AD (2021). Sliding contact accelerates solute transport into the cartilage surface compared to axial loading. Osteoarthritis and Cartilage. https://doi.org/10.1016/j.joca.2021.05.060.
  25. Geertsma, HM et al. (2021). Constitutive nuclear accumulation of endogenous alpha-synuclein in mice causes motor dysfunction and cortical atrophy, independent of protein aggregation. https://doi.org/10.1101/2021.10.13.464123.
  26. Watanabe, M. et al. (2021). Bone replaces unloaded articular cartilage during knee immobilization. A longitudinal study in rat. Bone 142. 115694.
  27. McCloskey, CW et al. (2020). Metformin abrogates age-associated ovarian fibrosis. Clin. Cancer. Res. 26(3):632.
  28. Zhou, H et al. (2020). Reversibility of marrow adipose accumulation and reduction of trabecular bone in the epiphysis of the proximal tibia. Acta Histochemica (122):151604.
  29. Kang, M. et al. (2020). A lung tropic AAV vector improves survival in a murine model of surfactant B deficiency. Nat Commun 11(1):3929.
  30. Tomlinson, J. et al. (2017). Holocranohistochemistry enables the visualization of a-synuclein expression in the murine olfactory system and discovery of its systemic anti-microbial effects. J Neural Transm. 124:721.
  31. Modulevsky DJ, et al. (2016). Bicompatibility of subcutaneously implanted plant derived cellulose biomaterials. PloS One 11(6): e0157894.
  32. Zhang, Q et al. (2012). Mouse Nkrpl-clr gene cluster sequence and expression analyses reveal conservation of tissue-specific MHC-independent immunosurveillance. Plos One 7(12):e50561.
  33. Sandhu, JK et al. (2000). Neutrophils, nitric oxide synthase; mutations in the mutatect murine tumor model. Am J of Path. 156: 2(504).