Dr. Simon Chen
Dr. Simon Chen
Associate Professor, Department of Cellular and Molecular Medicine | Canada Research Chair in Neural Circuits and Behavior

BSc Cell Biology, University of British Columbia, 2007
PhD Neuroscience, University of British Columbia, 2012
Postdoctoral Fellow, University of California, San Diego, Neuroscience, 2016

Roger Guindon Hall, room 3224
613-562-5800 ext. 2407


Overview of interests

One of the most important unresolved questions in neuroscience is how memories are encoded and stored in the brain. Motor learning differs from other forms of learning, in which repetitive training and practice is required in order to achieve highly skilled and reproducible movements. Our lab employs a novel forelimb lever-press task for head-fixed mice, permitting us to perform chronic structural and functional two-photon imaging in awake and behaving mice. We aim to elucidate the molecular mechanisms underlying learning-driven neural circuit modifications, with spatial precision and cell subtype-specificity, during the formation of new motor memories in the awake brain.

Selected publications

  • Yin, X., Jones, N., Yang, J.W., Asraoui, N., Mathieu, M.E., Cai, L., Chen, S.X.(2021). Delayed motor learning in 16p11.2 deletion mouse model of autism is rescued by locus coeruleus activation. Nature Neuroscience
  • Lee, C., Lavoie, A., Liu, J.X., Chen, S.X.*, Liu, B.H.* (2020). Light Up the Brain: the application of optogenetics in cell-type specific dissection of brain circuits. Frontiers in Neural Circuits 14:18 *co-corresponding last authors
  • Chen, S.X., Kim, A.N., Peters, A.J., Komiyama, T. (2015) Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nature Neuroscience18(8):1109-15 Highlighted by News and Views in Nature Neuroscience - Grillo, F.W., West, L., De Paola, V. (2015) Removing synaptic brakes on learning. Nature Neuroscience18(8):1162-64
  • Peters, A.J., Chen, S.X., Komiyama, T. (2014) Emergence of reproducible spatiotemporal activity during motor learning. Nature510(7504):263-7  
  • Chen, S.X., Cherry, A., Tari, P.K., Podorgski, K., Kwong, KH, Haas, K. (2012). The transcription factor MEF2 directs developmental visually-driven functional and structural metaplasticity. Cell151(1), 41-55. Highlighted by Preview in Cell – Della Santina, L., Wong, RO. (2015) A molecular link tethering neuronal response with the past. Cell 151(1):9-11.
  • Chen, S.X., Tari, P.K., She, K., and Haas, K. (2010). Neurexin-neuroligin cell adhesion complexes contribute to synaptotropic dendritogenesis via growth stabilization mechanisms in vivo. Neuron 67, 967-983.

Research interests

  • Neuroscience
  • Autism
  • Motor cortex and motor learning
  • Synaptic plasticity
  • Neural circuits